Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Phytomedicine ; 129: 155694, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38733904

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is associated with intestinal macrophage infiltration due to disruption of the mucosal barrier and bacterial invasion. Therefore, it is crucial to identify therapeutic agents capable of attenuating the macrophage-induced inflammatory response to preserve mucosal homeostasis and immune tolerance. The modified Zhenwu decoction (CDD-2103) is a novel herbal formulation developed based on the principles of Traditional Chinese medicine. To date, there are no clinically approved herbal formulations for UC with a well-known mechanism of action on macrophages. PURPOSE: The objective of this study was to systematically investigate the inhibitory effect of the active fraction of CDD-2103 in a mouse model of chronic colitis and delineate the mechanisms underlying its inhibitory action. METHODS: CDD-2103 was extracted into four fractions using organic solvents with increasing polarity. A chronic 49-day dextran sulfate sodium (DSS)-induced colitis mice model, closely resembling human clinical conditions, was used to examine the effect of CDD-2103 on chronic colitis. To confirm the effect of CDD-2103 on macrophages in this chronic colitis model, adoptive macrophage transfer and CCL2 supplementation were conducted. The mechanisms of action of CDD-2103 were further elucidated utilizing bone marrow-derived macrophages (BMDMs). Transcriptome analysis was conducted to gain insights into the underlying mechanism of action of CDD-2103 in BMDMs. RESULTS: Our in vitro and in vivo findings demonstrated that the ethanol-enriched fraction of CDD-2103 exhibited significant anti-inflammatory effects, leading to the suppression of colitis severity. This effect was associated with diminished accumulation of colonic macrophages in the lamina propria of CDD-2103-intervened colitis mice. Specifically, CDD-2103 inhibited CCR2/L2-mediated proinflammatory macrophage infiltration into the colon without affecting macrophage proliferation. Mechanistically, CDD-2103 inhibited Fyn expression-mediated p38 MAPK activation and subsequently suppressed CCR2 expression in BMDMs. CONCLUSIONS: Collectively, our study supports the potential use of CDD-2103 to limit macrophage infiltration, thereby reducing inflammation during UC treatment. CDD-2103 and the components in the ethanolic fraction are promising candidates for the development of novel drugs for UC management. Additionally, our study underscores Fyn-mediated CCR2 expression as a potential therapeutic target for the management of UC.

2.
Int J Biol Macromol ; 269(Pt 1): 131869, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38670195

RESUMEN

Protein glycation in human body is closely linked to the onset/progression of diabetes associated complications. These glycated proteins are commonly known as advanced glycation end products (AGEs). Recent literature has also highlighted the involvement of AGEs in other non-communicable diseases (NCDs) such as cardiovascular, cancer, and Alzheimer's diseases and explored the impact of plant metabolites on AGEs formation. However, the significance of endophytic metabolites against AGEs has recently garnered attention but has not been thoroughly summarized thus far. Therefore, the objective of this review is to provide a comprehensive overview of the importance of endophytic metabolites in combating AGEs under NCDs conditions. Additionally, this review aims to elucidate the processes of AGEs formation, absorption, metabolism, and their harmful effects. Collectively, endophytic metabolites play a crucial role in modulating signaling pathways and enhancing the digestibility properties of gut microbiota (GM) by targeting on AGEs/RAGE (receptor for AGEs) axis. Furthermore, these metabolites exhibit anti-AGEs activities similar to those derived from host plants, but at a lower cost and higher production rate. The use of endophytes as a source of such metabolites offers a risk-free and sustainable approach that holds substantial potential for the treatment and management of NCDs.

3.
J Adv Res ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38677546

RESUMEN

INTRODUCTION: Ulcerative colitis (UC) is a chronic inflammatory disease characterized by loss of immune tolerance to luminal antigens and progressive intestinal tissue injury. Thus, the re-establishment of immune tolerance is crucial for suppressing aberrant immune responses and UC progression. OBJECTIVES: This study aimed to investigate the mechanisms underlying the action of CDD-2103 and its bioactive compounds in mediating immune regulation in mouse models of colitis. METHODS: Two experimental colitis models, chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and T-cell transfer-induced Rag1-/- mice, were used to determine the effects of CDD-2103 on colitis progression. Single-cell transcriptome analysis was used to profile the immune landscape and its interactions after CDD-2103 treatment. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the major components interacting with lymphoid cells. A primary cell co-culture system was used to confirm the effects of bioactive component. RESULTS: CDD-2103 dose-dependently suppresses the progression of colitis induced by chemicals or T cell transplantation in Rag1-/- mice. The effect of CDD-2103 is primarily attributable to an increase in the de novo generation of regulatory T cells (Tregs) in the lamina propria (LP). Single-cell transcriptomic analysis revealed that CDD-2103 treatment increased the number of tolerogenic dendritic cells (DCs). Mechanistically, CDD-2103 promoted tolerogenic DCs accumulation and function by upregulating several genes in the electron transport chain related to oxidative phosphorylation, leading to increased differentiation of Tregs. Further LC-MS analysis identified several compounds in CDD-2103, particularly those distributed within the mesenteric lymph nodes of mice. Subsequent studies revealed that palmatine and berberine promoted tolerogenic bone marrow-derived dendritic cells (BMDC)-mediated Treg differentiation. CONCLUSION: Overall, our study demonstrated that the clinically beneficial effect of CDD-2103 in the treatment of UC is based on the induction of immune tolerance. In addition, this study supports berberine and palmatine as potential chemical entities in CDD-2103 that modulate immune tolerance.

4.
Food Chem ; 448: 139090, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547714

RESUMEN

Baked oyster is a popular seafood dish around the world. The present study investigated the effect of various concentrations of a green-tea extract (GTE) marinade on the safety and sensory profiles of oysters baked for different durations. The results showed 10 g/L of GTE and 10-min baking time was the optimal combination, as supported by significantly attenuated lipid oxidation (35.29 %) and Nε-(carboxyethyl)lysine (CEL) content (48.51 %) without appreciable negative impact on the sensory or nutritional quality of the oysters. However, high concentrations of the marinade or prolonged baking promoted protein oxidation and Nε-(carboxymethyl)lysine (CML) formation likely through the pro-oxidative action of the GTE phytochemicals. Correlation analysis further revealed the main factors that affected CML, CEL, and fluorescent AGEs generation, respectively. These findings provide theoretical support for the protective effect and mechanism of GTE against quality deterioration of baked oysters and would help broaden the application of GTE in the food industry.

5.
Food Funct ; 15(8): 3920-3938, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517682

RESUMEN

Alzheimer's disease (AD) currently lacks effective treatments, making its prevention a critical focus. While accumulating evidence supports that plant-based fermented foods may contribute to AD prevention, the neuroprotective effect of plant-based fermented foods on AD has not been comprehensively reviewed. In this study, we conducted a systematic review of preclinical studies on the efficacy of plant-based fermented foods in AD. The literature search was based on databases including PubMed, Embase, Web of Science, and Scopus. The PICO approach was employed for report inclusion, and each report was assessed for risk of bias using the SYRCLE's RoB tool. From the analysis of 25 retrieved reports, we extracted essential details, including bibliographic information, animal models and characteristics, sources of plant-based fermented foods, dosages, administration routes, durations, and outcome measures. Our findings indicate that plant-based fermented foods may positively impact acute and long-term cognitive function, as well as beta-amyloid-mediated neurodegeneration. This review sheds light on the potential neuroprotective benefits of plant-based fermented foods for various AD-related aspects, including oxidative stress, synaptotoxicity, neuroinflammation, tau hyperphosphorylation, dysfunctional amyloidogenic pathways, and cognitive deficits, as observed in rodent models of AD. However, the small number of studies obtained from our literature search and the finding that many of them were of moderate methodological quality suggest the need for further investigation to substantiate the beneficial potential of this class of functional food for the management of AD.


Asunto(s)
Enfermedad de Alzheimer , Alimentos Fermentados , Fármacos Neuroprotectores , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/dietoterapia , Animales , Humanos , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo
6.
Food Chem ; 445: 138785, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387320

RESUMEN

The modification of starch digestibility can be achieved through the formation of complexes with polyphenols. We studied the combined impacts of ultrasound and high-pressure homogenization (UT-HPH) on the structure and in vitro digestibility of rice starch-chlorogenic acid complexes. The development of V-type complexes was supported by our findings, which also showed that synergistic UT-HPH therapy exhibited the highest absorbance value for the complexing index (0.882). Significant alterations in digestibility were also observed in the complexes, with the content of RDS decreasing from 49.27% to 27.06%, the content of slowly SDS increasing from 25.69% to 35.35%, and the percentage of RS increasing from 25.05% to 37.59%. Furthermore, a high positive correlation was found by applying the Pearson correlation coefficient in our research between RS, weight, PSD, and CI. This study presents a sustainable processing approach for utilizing chlorogenic acid in starch-rich food systems.


Asunto(s)
Oryza , Almidón , Almidón/química , Ácido Clorogénico , Digestión , Hidroxibenzoatos , Oryza/química
7.
Nat Commun ; 15(1): 1034, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310105

RESUMEN

Obesity, a global health challenge, is a major risk factor for multiple life-threatening diseases, including diabetes, fatty liver, and cancer. There is an ongoing need to identify safe and tolerable therapeutics for obesity management. Herein, we show that treatment with artesunate, an artemisinin derivative approved by the FDA for the treatment of severe malaria, effectively reduces body weight and improves metabolic profiles in preclinical models of obesity, including male mice with overnutrition-induced obesity and male cynomolgus macaques with spontaneous obesity, without inducing nausea and malaise. Artesunate promotes weight loss and reduces food intake in obese mice and cynomolgus macaques by increasing circulating levels of Growth Differentiation Factor 15 (GDF15), an appetite-regulating hormone with a brainstem-restricted receptor, the GDNF family receptor α-like (GFRAL). Mechanistically, artesunate induces the expression of GDF15 in multiple organs, especially the liver, in mice through a C/EBP homologous protein (CHOP)-directed integrated stress response. Inhibition of GDF15/GFRAL signalling by genetic ablation of GFRAL or tissue-specific knockdown of GDF15 abrogates the anti-obesity effect of artesunate in mice with diet-induced obesity, suggesting that artesunate controls bodyweight and appetite in a GDF15/GFRAL signalling-dependent manner. These data highlight the therapeutic benefits of artesunate in the treatment of obesity and related comorbidities.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Obesidad , Ratones , Masculino , Animales , Artesunato/farmacología , Artesunato/uso terapéutico , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Primates , Macaca/metabolismo
8.
Compr Rev Food Sci Food Saf ; 23(1): e13268, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284588

RESUMEN

The Maillard reaction (MR) has been established to be a paramount contributor to the characteristic sensory property of thermally processed food products. Meanwhile, MR also gives rise to myriads of harmful byproducts (HMPs) (e.g., advanced glycation end products (AGEs) and acrylamide). Nutritional additives have attracted increasing attention in recent years owing to their potential to simultaneously improve nutritional quality and attenuate HMP formation. In this manuscript, a brief overview of various nutritional additives (vitamins, minerals, fatty acids, amino acids, dietary fibers, and miscellaneous micronutrients) in heat-processed food is provided, followed by a summary of the formation mechanisms of AGEs and acrylamide highlighting the potential crosstalk between them. The main body of the manuscript is on the capability of nutritional additives to modulate AGE and acrylamide formation besides their traditional roles as nutritional enhancers. Finally, limitations/concerns associated with their use to attenuate dietary exposure to HMPs and future perspectives are discussed. Literature data support that through careful control of the addition levels, certain nutritional additives possess promising potential for simultaneous improvement of nutritional value and reduction of AGE and acrylamide content via multiple action mechanisms. Nonetheless, there are some major concerns that may limit their wide applications for achieving such dual functions, including influence on sensory properties of food products, potential overestimation of nutrition enhancement, and introduction of hazardous alternative reaction products or derivatives. These could be overcome through comprehensive assay of dose-response relationships and systematic evaluation of the diverse combinations from the same and/or different categories of nutritional additives to establish synergistic mixtures.


Asunto(s)
Alimentos Procesados , Reacción de Maillard , Estado Nutricional , Valor Nutritivo , Acrilamidas
9.
Mar Drugs ; 21(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37888454

RESUMEN

Euglena gracilis is one of the few permitted edible microalgae. Considering consumer acceptance, E. gracilis grown heterotrophically with yellow appearances have wider food industrial applications such as producing meat analogs than green cells. However, there is much room to improve the protein content of heterotrophic culture cells. In this study, the effects of nitrogen sources, temperature, initial pH, and C/N ratios on the protein production of E. gracilis were evaluated under heterotrophic cultivation. These results indicated that ammonium sulfate was the optimal nitrogen source for protein production. The protein content of E. gracilis cultured by ammonium sulfate increased by 113% and 44.7% compared with that cultured by yeast extract and monosodium glutamate, respectively. The manipulation of the low C/N ratio further improved E. gracilis protein content to 66.10% (w/w), which was 1.6-fold of that in the C/N = 25 group. Additionally, amino acid analysis revealed that the nitrogen-to-protein conversion factor (NTP) could be affected by nitrogen sources. A superior essential amino acid index (EAAI) of 1.62 and a balanced amino acid profile further confirmed the high nutritional value of E. gracilis protein fed by ammonium sulfate. This study highlighted the vast potency of heterotrophic cultured E. gracilis as an alternative dietary protein source.


Asunto(s)
Euglena gracilis , Microalgas , Euglena gracilis/metabolismo , Microalgas/metabolismo , Sulfato de Amonio/metabolismo , Proteínas/metabolismo , Aminoácidos/metabolismo , Nitrógeno/metabolismo
10.
Int J Biol Macromol ; 246: 125619, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392912

RESUMEN

V-type starch-polyphenol complexes, known for their improved physicochemical properties compared to native starch, are challenging to form efficiently. In this study, the effects of tannic acid (TA) interaction with native rice starch (NS) on digestion and physicochemical properties were investigated using non-thermal ultrasound treatment (UT). Results showed the highest complexing index for NSTA-UT3 (∼ 0.882) compared to NSTA-PM (∼0.618). NSTA-UT complexes reflected the V6I-type complex having six anhydrous glucose per unit per turn with peaks at 2θ = 7°, 13°, and 20°. The maxima of the absorption for iodine binding were suppressed by the formation of V-type complexes depending on the concentration of TA in the complex. Furthermore, rheology and particle size distributions were also affected by TA introduction under ultrasound, as revealed by SEM. XRD, FT-IR, and TGA analyses confirmed V-type complex formation for NSTA-UT samples, with improved thermal stability and increased short-range ordered structure. Ultrasound-induced addition of TA also decreased the hydrolysis rate and increased resistant starch (RS) concentration. Overall, ultrasound processing promoted the formation of V-type NSTA complexes, suggesting that tannic acid could be utilized for the production of anti-digestion starchy foods in the future.


Asunto(s)
Oryza , Almidón , Almidón/química , Oryza/química , Espectroscopía Infrarroja por Transformada de Fourier , Fenómenos Químicos , Taninos
11.
Foods ; 12(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37238785

RESUMEN

High temperatures applied in the production of plant-based meat analogs (PBMA) lead to the occurrence of Maillard reactions, in which harmful compounds Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL) and acrylamide are formed. However, little research has focused on these compounds in PBMA. In this study, the contents of CML, CEL and acrylamide in 15 commercial-sold PBMA were determined by an ultra-high performance liquid chromatograph coupled with a triple quadrupole tandem mass spectrometer (UHPLC-QqQ-MS/MS). Nutrients (protein, amino acids, fatty acids and sugars) which are related to the formation of these compounds were also studied. The results showed that CML, CEL and acrylamide contents were in the range of 16.46-47.61 mg/kg, 25.21-86.23 mg/kg and 31.81-186.70 µg/kg, respectively. Proteins account for 24.03-53.18% of PBMA. Except for Met + Cys, which is the limiting amino acid of most PBMA, all other indispensable amino acids met the requirements for adults. Besides, PBMA had more n-6 fatty acids than n-3 fatty acids. A correlation analysis showed that proteins and the profiles of amino acid and fatty acid had little influence on CML but significant influence on CEL and acrylamide. The results of the present study can be used as a reference to produce PBMA with higher amounts of nutrients and lower amounts of CML, CEL and acrylamide.

12.
J Agric Food Chem ; 71(18): 6882-6893, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37126594

RESUMEN

Red wine polyphenolic complexes have attracted increasing attention as potential modulators of human metabolic disease risk. Our previous study discovered that red wine high-molecular-weight polymeric polyphenolic complexes (HPPCs) could inhibit key metabolic syndrome-associated enzymes and favorably modulate human gut microbiota (GM) in simulated colonic fermentation assay in vitro. In this work, the efficacy of HPPC supplementation (150 and 300 mg/kg/day, respectively) against high-fat diet (HFD)-induced metabolic disturbance in mice was investigated. HPPCs effectively attenuated HFD-induced obesity, insulin resistance, and lipid and glucose metabolic dysregulation and ameliorated inflammatory response and hepatic and colonic damage. It also improved the relative abundance of Bacteroidetes and Firmicutes, consistent with an anti-obesity phenotype. The favorable modulation of GM was further supported by improvement in the profile of fecal short-chain fatty acids. The higher dosage generally had a better performance in these effects than the low dosage. Moreover, serum metabolite profiling and pathway enrichment analysis revealed that HPPCs significantly modulated vitamin B metabolism-associated pathways and identified N-acetylneuraminic acid and 2-methylbutyroylcarnitine as potential biomarkers of the favorable effect on HFD-induced metabolic dysregulation. These findings highlight that dietary supplementation with red wine HPPCs is a promising strategy for the management of weight gain and metabolic dysregulation associated with HFD.


Asunto(s)
Microbioma Gastrointestinal , Vino , Humanos , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Obesidad/etiología , Aumento de Peso , Ratones Endogámicos C57BL
13.
Crit Rev Food Sci Nutr ; : 1-23, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36919601

RESUMEN

Seed mucilages are potential sources of natural polysaccharides. They are biodegradable, biocompatible, sustainable, renewable, and safe for human consumption. Due to the desirable physicochemical and functional properties (e.g. gelling, thickening, stabilizing, and emulsifying), seed mucilages have attracted extensive attention from researchers for utilization as a promising material for the development of advanced carrier systems. Seed mucilages have been utilized as natural polymers to improve the properties of various carrier systems (e.g. complex coacervates, beads, nanofibers, and gels) and for the delivery of diverse hydrophilic and lipophilic compounds (e.g. vitamins, essential oils, antioxidants, probiotics, and antimicrobial agents) to achieve enhanced stability, bioavailability, bioactivity of the encapsulated molecules, and improved quality attributes of food products. This review highlights the recent progress in seed mucilage-based carrier systems for food and nutraceutical applications. The main contents include (1) sources, extraction methods, and physicochemical and functional characteristics of seed mucilages, (2) application of seed mucilages for the development of advanced carrier systems, (3) major issues associated with carrier fabrication, and (4) mechanisms of carrier development, latest improvements in carrier formulation, carrier efficiency in the delivery of bioactive agents, and application in food and nutraceuticals. Furthermore, major challenges and future perspectives of seed mucilage-based carriers for a commercial application are discussed.

14.
Food Chem ; 404(Pt A): 134558, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36244065

RESUMEN

The present study aimed to investigate the effects of five emulsifiers, including DATEM, DMG, PL, SDS, and SPP, on HA formation in chemical models and roasted chicken patties. UPLC-MS analysis showed that DMG and SPP were the most promising among them. In particular, at 0.15-0.9% (w/w) in roasted chicken patties, they effectively reduced the contents of PhIP (21-43%), MeIQx (26-50%) and 4,8-DiMeIQx (16-43%) relative to the control, whereas DATEM, PL and SDS promoted their formation. Low-Field Nuclear Magnetic Resonance and Magnetic Resonance Imaging analysis revealed that the inhibitory effect of SPP and DMG was partly mediated through their capability to help retain water in the macromolecular structures of the muscle tissue. This favorable effect was also supported by the significantly improved adhesiveness of the SPP and DMG samples relative to other samples. These findings suggest that SPP and DMG are effective additives for attenuation of HA contents in meat-based products.


Asunto(s)
Pollos , Compuestos Heterocíclicos , Animales , Culinaria/métodos , Cromatografía Liquida , Agua , Espectrometría de Masas en Tándem/métodos , Compuestos Heterocíclicos/análisis , Carne/análisis , Aminas/química , Emulsionantes/análisis
15.
Crit Rev Food Sci Nutr ; 63(16): 2773-2789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34554029

RESUMEN

As a major ubiquitous secondary metabolite, flavonoids are widely distributed in planta. Among flavonoids, kaempferol is a typical natural flavonol in diets and medicinal plants with myriad bioactivities, such as anti-inflammatory activity, anti-cancer activity, antioxidant activity, and anti-diabetic activity. However, the natural sources, absorption and metabolism as well as the bioactivities of kaempferol have not been reviewed comprehensively and systematically. This review highlights the latest research progress and the effect of kaempferol in the prevention and treatment of various chronic diseases, as well as its protective health effects, and provides a theoretical basis for future research to be used in nutraceuticals. Further, comparison of the different extraction and analytical methods are presented to highlight the most optimum for PG recovery and its detection in plasma and body fluids. Such review aims at improving the value-added applications of this unique dietary bioactive flavonoids at commercial scale and to provide a reference for its needed further development.


Asunto(s)
Flavonoides , Quempferoles , Quempferoles/farmacología , Quempferoles/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Polifenoles , Antioxidantes/farmacología , Suplementos Dietéticos
16.
Crit Rev Food Sci Nutr ; 63(24): 7091-7107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35199615

RESUMEN

Prunus mume Sieb. Et Zucc (P. mume) is an acidic fruit native to China (named Chinese Mei or greengage plum). It is currently cultivated in several Asian countries, including Japan ("Ume"), Korea (Maesil), and Vietnam (Mai or Mo). Due to its myriad nutritional and functional properties, it is accepted in different countries, and its characteristics account for its commercialization. In this review, we summarize the information on the bioactive compounds from the fruit of P. mume and their structure-activity relationships (SAR); the pulp has the highest enrichment of bioactive chemicals. The nutritional properties of P. mume and the numerous uses of its by-products make it a potential functional food. P. mume extracts exhibit antioxidant, anticancer, antimicrobial, and anti-hyperuricaemic properties, cardiovascular protective effects, and hormone regulatory properties in various in vitro and in vivo assays. SAR shows that the water solubility, molecular weight, and chemical conformation of P. mume extracts are closely related to their biological activity. However, further studies are needed to evaluate the fruit's potential nutritional and functional therapeutic mechanisms. The industrial process of large-scale production of P. mume and its extracts as functional foods or nutraceuticals needs to be further optimized.


Asunto(s)
Prunus , Prunus/química , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/análisis , Relación Estructura-Actividad , Suplementos Dietéticos
17.
Crit Rev Food Sci Nutr ; 63(5): 657-673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34278850

RESUMEN

Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.


Asunto(s)
Fagopyrum , Plantas Medicinales , Fagopyrum/química , Flavonoides/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Glicósidos
18.
Front Nutr ; 9: 975831, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204376

RESUMEN

Fatty acid profile, protein and fatty acid oxidation and flavor profile of pan-fried chicken patties formulated with various levels of Perilla frutescens seed meal (PSM) as a fat substitute was investigated in this study. The formation of heterocyclic amines (HCAs) in the chicken patties was also evaluated. The results showed that pan-fried patties formulated with 20% PSM (PSM4) had the highest ranges of oleic acid and ΣMUFA content and ΣPUFA/ΣSFA ratio. Low to medium levels of PSM (PSM1, 2, and 3 corresponding to 5, 10, and 15% of PSM, respectively) reduced the content of lipid peroxidation products, while high level (PSM4) increased it. All levels of PSM were also found to be effective against elevation in carbonyl content relative to the control. Moreover, the PSM effectively inhibited HCA formation in the chicken patties. The total contents of HCAs in PSM1, PSM2, PSM3, and PSM4 samples were significantly (P < 0.05) lower than that of the control sample, corresponding to 31.9, 46.1, 57.2, and 44.8% inhibition, respectively. PSM4, however, had no or very little effect on the formation of PhIP, 4,8-DiMeIQx and AαC, despite a strong inhibitory effect on MeIQx formation. These findings not only support the promising potential of PSM for application as a fat substitute to improve the fatty acid profile and reduce the content of harmful by-products in heat-processed chicken, but also highlight that appropriate addition level is a critical factor in optimizing the functional capacity of this natural agent.

19.
Food Funct ; 13(19): 10147-10157, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36106769

RESUMEN

Cod is rich in high-quality proteins and is a popular ingredient in many cuisines. However, it has also been a culprit in many seafood allergy cases. In the present study, the effect of pretreatment with Allium powders on the allergenicity and sensory profile of roasted cod was investigated. Enzyme-linked immunosorbent assay (ELISA) showed significantly reduced antibody-binding capacity of the Allium-pretreated samples compared with the control. The anti-allergenic effect was further confirmed with indirect ELISA using human sera. Moreover, the Allium pretreatments resulted in lower free sulfhydryl contents and higher surface hydrophobicity of the protein extracts prepared from the roasted cod samples, consistent with structural changes in favor of reduced allergenicity. Among the five Allium spp. evaluated, Chinese chive was the most effective, and mangiferin was identified to be a major anti-allergenic constituent. Docking simulation and mass spectrometry analyses revealed its strong parvalbumin-binding affinity and capability to reduce parvalbumin content in roasted cod, respectively. Finally, sensory evaluation indicated that the attenuation of allergenicity of roasted cod with the Allium spp. powders was accompanied by positive modulation of its flavor and taste profiles. These findings may provide insights for the development of dietary-phytochemical-based strategies for the management of parvalbumin-associated allergies.


Asunto(s)
Allium , Hipersensibilidad a los Alimentos , Alérgenos/química , Hipersensibilidad a los Alimentos/prevención & control , Humanos , Inmunoglobulina E/metabolismo , Parvalbúminas
20.
Food Res Int ; 157: 111322, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761609

RESUMEN

Protein oxidation in meat has received immense attention since it significantly affects the quality of meat-based products. This review sheds light on the effects of protein oxidation on the physicochemical properties of meat and meat-based products during processing, and highlights major quality concerns and challenges to the food industry. Protein oxidation is often initiated by oxidative attack by reactive oxygen species and modifications of side chain amino acids, which may result in protein aggregation, carbonylation, alteration of surface hydrophobicity, and perturbation in primary, secondary and tertiary structures. Thus, protein oxidation during processing (especially thermal treatments) has raised serious concerns about the quality of the final products. These adverse consequences usually intensify with increase in processing temperature and time. Protein oxidation may also cause severe deterioration of nutritional value owing to the loss of essential amino acids and resistance of the oxidized protein molecules to the hydrolytic action of digestive enzymes. In addition, it may promote drip loss and decrease water holding capacity that would eventually negatively impact texture. Furthermore, protein oxidation is closely associated with other processing-induced adverse events, in particular lipid oxidation and formation of toxic Maillard reaction products, such as heterocyclic amines and advanced glycation end-products, but the underlying mechanisms have remained unclear. Several strategies including careful choice of processing methods and use of natural agents, such as polyphenols, hydrocolloids and vitamins alone or in combination have been proposed for the attenuation of protein oxidation and its related undesirable reactions through binding with precursors and/or reactive intermediary compounds.


Asunto(s)
Aminoácidos , Carne , Aminoácidos/metabolismo , Industria de Alimentos , Productos Finales de Glicación Avanzada/metabolismo , Músculos/metabolismo , Oxidación-Reducción , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...